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The linear stability of the plane Couette flow against thermoconvective rolls is
studied. The case of a flow without a boundary-imposed temperature gradient
is investigated. The non-uniform, possibly unstable, basic temperature distribution
is caused by the effect of the internal viscous heating. Asymmetric thermal boundary
conditions are considered: the bottom boundary is adiabatic, while the top boundary
is isothermal. The focus is on a fluid with a large, mathematically infinite, Prandtl
number, although the two-dimensional transverse roll instability is discussed also for
a finite Prandtl number. The transition to the instability is described through the
governing parameter Ge Pe2, where Ge is the Gebhart number and Pe is the Péclet
number. The response of the basic Couette flow to arbitrarily oriented oblique rolls is
tested, so that a complete set of disturbance modes is taken into account. It is shown
that the Couette flow is more unstable to longitudinal rolls than to any other oblique
roll mode.

Key words: absolute/convective instability, buoyancy-driven instability, general fluid
mechanics

1. Introduction
It is well known that the plane Couette flow has no linear hydrodynamic instability.

This fact is widely discussed in the literature as, for instance, in Drazin & Reid (2004).
The first rigorous proof of the linear stability of plane Couette flow is attributed to
Romanov (1973). This author studied the evolution of the normal modes through
the analysis of the Orr–Sommerfeld equation, showing that these modes are always
damped, for every value of the Reynolds number.

Although the hydrodynamic instability is absent in the plane Couette flow, an
instability of thermal origin may arise. In fact, the hydrodynamic equations, i.e. the
local mass and momentum balance equations, may develop a coupling with the local
energy balance equation. The coupling term in the local momentum balance equation,
may be either the viscous force through a temperature-dependent viscosity of the fluid,
or the gravitational body force through a thermal buoyancy effect. The origin of the
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temperature gradient that drives this energy–momentum coupling can be either the
prescribed thermal boundary conditions or the viscous dissipation effect.

The role of the viscous dissipation as a possible source of instability was explored
in the pioneering work of Joseph (1965). This author pointed out that the plane
Couette flow, with wall temperatures a prescribed constant, may be linearly unstable
due to the viscous dissipation effect and to a temperature-dependent viscosity of the
fluid. In Joseph (1965), no buoyancy effect was considered, and the linear stability
analysis was performed with respect to the inviscid (infinite Reynolds number) Orr–
Sommerfeld equation. Sukanek, Goldstein & Laurence (1973) further developed the
study initiated by Joseph (1965), with the same boundary conditions and maintaining
the assumption of negligible buoyancy effects. The analysis of Sukanek et al. (1973)
refers to finite Reynolds numbers and leads to the numerical evaluation of the critical
conditions for the onset of instability for a special viscosity–temperature relationship,
i.e. an exponential law. These authors show that, when either the viscous dissipation
is switched off or the viscosity is a constant, the Couette flow is stable, which
is the result reported in Drazin & Reid (2004) and proved by Romanov (1973).
More precise numerical results based on a fourth-order Runge–Kutta method were
obtained by Ho, Denn & Anshus (1977), with respect to the same assumptions and
boundary conditions defined in Sukanek et al. (1973). The effects of different types of
temperature-dependent viscosity models, the Nahme law and the Arrhenius law, on
the thermal instability of plane Couette flow have been explored by Yueh & Weng
(1996). Johns & Narayanan (1997) and Subrahmaniam, Johns & Narayanan (2002)
investigated other aspects of the problem studied by Joseph (1965). Quite recently,
the analysis of the viscous dissipation instability of the plane Couette flow has been
extended to non-Newtonian fluids by Nouar & Frigaard (2009). We point out the
common characteristics of all these papers originated from Joseph’s analysis:

(a) they consider the destabilizing role of the interplay between the viscous
dissipation and the temperature-dependent viscosity;

(b) they neglect the buoyancy force;
(c) they assume that the same uniform temperature is prescribed on the two plane

boundary walls.
The above literature survey is intended just to allow us to distinguish our own study
from the previous works and is not meant to be definitive. Much more could be said
about the investigations initiated with Joseph (1965). In this connection, a referee has
pointed out to us that the study by Joseph (1965) was predicated on disturbances
with ‘zero’ wavenumber, and made it seem that the wall stress was a control variable
(which it is not).

A closely related subject is the buoyancy-induced instability of the plane Couette
flow due to a uniform vertical temperature gradient. This subject has been studied by
Ingersoll (1966) and, more recently, by Fujimura & Kelly (1988) in the more general
case of the Poiseuille–Couette flow. These papers refer to a fluid layer bounded by
rigid isothermal walls with an externally imposed temperature difference. Ingersoll
(1966) and Fujimura & Kelly (1988) evaluated the critical Rayleigh number for the
onset of the thermoconvective instability, as a function of the Reynolds number
associated with the basic Couette flow. These authors show that the critical Rayleigh
number is an increasing function of the Reynolds number and it tends to the well-
known critical value of the Rayleigh–Bénard instability, 1707.67, when the Reynolds
number tends to zero.

The aim of this paper is to investigate the linear stability of the plane Couette
flow induced by the interplay between the viscous dissipation and the buoyancy
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Figure 1. A sketch of the fluid layer and of the coordinate system.

force, on assuming a constant viscosity. In other words, we are interested in the
thermoconvective instability activated by the viscous dissipation. The non-uniform
character of the basic temperature distribution will be assumed to be entirely due to
the frictional heating, and not to an external temperature difference imposed through
the boundary conditions. In fact, we will consider the case of an adiabatic bottom
wall at rest and an isothermal top moving wall. We will refer to a highly viscous fluid
such that the Prandtl number is much larger than unity. This assumption allows us
to consider a complete set of oblique roll disturbances, with any possible orientation
with respect to the basic flow. Finally, the reliability of the highly viscous fluid
approximation is assessed by comparison with the case of a finite Prandtl number,
for transverse modes. We emphasize that this paper contains, to the best of our
knowledge, the first analysis of the linear instability of the plane Couette flow due
to the viscous dissipation and the buoyancy force, in the absence of an imposed
temperature difference at the boundary walls.

2. Couette flow with viscous dissipation
Let us consider plane Couette flow between the two horizontal boundaries z =0

and z = L, where (xi) = (x, y, z) are the Cartesian coordinates of the reference frame
defined in figure 1. We denote by: u = (ui) the velocity field; T the temperature
field; p the pressure field; ρ0 the fluid density at the reference temperature T0;
β the thermal expansion coefficient; g = (gi) the gravitational acceleration; ν the
kinematic viscosity; µ = ν ρ0 the dynamic viscosity; c the heat capacity per unit mass;
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k the thermal conductivity; α = k/(ρ0 c) the thermal diffusivity. Finally, we denote by
Dij the strain tensor:

Dij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.1)

According to the Oberbeck–Boussinesq approximation, the governing equations are

∂uj

∂xj

= 0, (2.2)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ0

∂p

∂xi

− (T − T0) βgi + ν∇2ui, (2.3)

ρ0c

(
∂T

∂t
+ uj

∂T

∂xj

)
= k∇2T + 2µ Dij Dij , (2.4)

where sums over repeated indices are implied. The boundary conditions are

z = 0 : u = (0, 0, 0),
∂T

∂z
= 0,

z = L : u = (u0 cos γ, u0 sin γ, 0), T = T0.

⎫⎬
⎭ (2.5)

The thermal boundary conditions correspond to a vanishingly small conductance of
the bottom wall and an infinite conductance of the top moving wall. As illustrated
in figure 1, the top wall moves at a constant velocity u0, with u0 = |u0|, along the
direction of the horizontal unit vector (cos γ, sin γ, 0), where γ is any angle such that
0 � γ � π/2.

2.1. Dimensionless variables

Let us consider the following transformation of the dependent and independent
variables:

xi

L
→ xi,

tα

L2
→ t,

uiL

α
→ ui,

(T − T0) kL2

µα2
→ T ,

pL2

µα
→ p,

L2Dij

α
→ Dij .

⎫⎪⎪⎬
⎪⎪⎭

(2.6)

Then, (2.2)–(2.5) are written in a dimensionless form,

∂uj

∂xj

= 0, (2.7)

1

Pr

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ GeT δi3 + ∇2ui, (2.8)

∂T

∂t
+ uj

∂T

∂xj

= ∇2T + 2 Dij Dij , (2.9)

z = 0 : u = (0, 0, 0),
∂T

∂z
= 0,

z = 1 : u = (Pe cos γ, Pe sin γ, 0), T = 0.

⎫⎬
⎭ (2.10)

A basic time-independent solution of (2.7)–(2.9) subject to (2.10) is sought such that:
(i) the velocity field u = (u, v, w) is parallel and oriented horizontally along the

direction of the top wall velocity;
(ii) the fields T and p depend only on z.
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One has
uB = Pez cos γ, vB = Pe z sin γ, wB = 0,

TB =
Pe2

2

(
1 − z2

)
, pB =

GePe2

2

(
z − z3

3

)
,

⎫⎪⎬
⎪⎭ (2.11)

where the subscript B stands for ‘basic flow’.
In (2.7)–(2.10), δij is Kronecker’s delta and the dimensionless parameters

Pr =
ν

α
, Ge =

βgL

c
, Pe =

u0L

α
, (2.12)

are the Prandtl number, the Gebhart number and the Péclet number, respectively.
We believe that our choice of scaling for the non-dimensionalization is the

appropriate one for the problem in hand. However, to aid comparison with previous
studies which have been expressed in terms of a Reynolds number, we mention that
if alternatively we used a velocity scale u0 instead of α/L (so that the ratio of the
new scale to the old scale is Pe), and consistent with this a time scale L/u0 instead of
L2/α, and define

ũ = u/Pe, t̃ = Pe t, p̃ = p/(Pe Re), T̃ = T/Pe2, D̃ij = Dij/Pe, (2.13)

where the Reynolds number Re is given by Re = Pe/P r , then (2.8) and (2.9) take the
forms

∂ũi

∂t̃
+ ũ j

∂ũi

∂x j
= − ∂p̃

∂xi
+ GePr T̃ δi3 +

1

Re
∇2ũi , (2.14)

Pe

(
∂T̃

∂t̃
+ ũ j

∂T̃

∂x j

)
= ∇2T̃ + 2 D̃ij D̃ij . (2.15)

3. Linear disturbances
Let us consider small perturbations, of order ε, of the basic Couette flow (2.11):

(u, v, w) = (uB, vB, wB) + (U, V, W ) ε, p = pB + Pε, T = TB + θε. (3.1)

By substituting (3.1) into (2.7)–(2.9) subject to (2.10) and neglecting terms of order
ε2, one obtains

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (3.2)

1

Pr

(
∂U

∂t
+ Pez cos γ

∂U

∂x
+ Pez sin γ

∂U

∂y
+ PeW cos γ

)
= −∂P

∂x
+ ∇2U, (3.3)

1

Pr

(
∂V

∂t
+ Pez cos γ

∂V

∂x
+ Pez sin γ

∂V

∂y
+ PeW sin γ

)
= −∂P

∂y
+ ∇2V, (3.4)

1

Pr

(
∂W

∂t
+ Pez cos γ

∂W

∂x
+ Pez sin γ

∂W

∂y

)
= −∂P

∂z
+ Geθ + ∇2W, (3.5)

∂θ

∂t
+ Pez

(
cos γ

∂θ

∂x
+ sin γ

∂θ

∂y
− PeW

)
= ∇2θ

+ 2 Pe

[
cos γ

(
∂U

∂z
+

∂W

∂x

)
+ sin γ

(
∂V

∂z
+

∂W

∂y

)]
, (3.6)
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z = 0 : (U, V, W ) = (0, 0, 0),
∂θ

∂z
= 0,

z = 1 : (U, V, W ) = (0, 0, 0), θ = 0.

⎫⎬
⎭ (3.7)

3.1. A highly viscous fluid: large-Pr approximation

Let us now assume that the fluid is highly viscous (kinematic viscosity much greater
than the thermal diffusivity) so that Pr → ∞. This implies that the inertial terms
in the local momentum balance equation can be neglected (creeping flow). The
approximation consists in assuming a very large Prandtl number, together with a
very small Reynolds number, so that the Péclet number is a finite quantity. Then, the
disturbance equations (3.2)–(3.7) can be simplified to

∂U

∂x
+

∂V

∂y
+

∂W

∂z
= 0, (3.8)

∇2U − ∂P

∂x
= 0, (3.9)

∇2V − ∂P

∂y
= 0, (3.10)

∇2W − ∂P

∂z
+ Ge θ = 0, (3.11)

∂θ

∂t
+ Pez

(
cos γ

∂θ

∂x
+ sin γ

∂θ

∂y
− PeW

)
= ∇2θ

+ 2 Pe

[
cos γ

(
∂U

∂z
+

∂W

∂x

)
+ sin γ

(
∂V

∂z
+

∂W

∂y

)]
, (3.12)

z = 0 : (U, V, W ) = (0, 0, 0),
∂θ

∂z
= 0,

z = 1 : (U, V, W ) = (0, 0, 0), θ = 0.

⎫⎬
⎭ (3.13)

According to the normal mode decomposition of the disturbance, one can consider a
two-dimensional roll arbitrarily oriented, i.e. oblique, with respect to the basic velocity
field by assuming

U = U (x, z, t), V = 0, W = W (x, z, t), θ = θ(x, z, t), P = P (x, z, t). (3.14)

Equation (3.14) defines arbitrary two-dimensional disturbances in the xz-plane. Then,
(3.10) is identically satisfied, while (3.8), (3.9) and (3.11)–(3.13) yield

∂U

∂x
+

∂W

∂z
= 0, (3.15)

∇2

(
∂U

∂z
− ∂W

∂x

)
− Ge

∂θ

∂x
= 0, (3.16)

∂θ

∂t
+ Pez

(
cos γ

∂θ

∂x
− PeW

)
= ∇2θ + 2 Pe cos γ

(
∂U

∂z
+

∂W

∂x

)
, (3.17)

z = 0 : (U, W ) = (0, 0),
∂θ

∂z
= 0,

z = 1 : (U, W ) = (0, 0), θ = 0,

⎫⎬
⎭ (3.18)
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where (3.16) has been obtained from (3.9) and (3.11) by differentiating (3.9) with
respect to z, differentiating (3.11) with respect to x and then subtracting the latter
resulting equation from the former one.

Let us introduce the streamfunction ψ such that

U = Ge
∂ψ

∂z
, W = − Ge

∂ψ

∂x
. (3.19)

Thus, (3.15) is identically satisfied, while (3.16)–(3.18) can be rewritten as

∇4ψ − ∂θ

∂x
= 0, (3.20)

∂θ

∂t
+ Pez

(
cos γ

∂θ

∂x
+ GePe

∂ψ

∂x

)
= ∇2θ + 2 GePe cos γ

(
∂2ψ

∂z2
− ∂2ψ

∂x2

)
, (3.21)

z = 0 : ψ = 0,
∂ψ

∂z
= 0,

∂θ

∂z
= 0,

z = 1 : ψ = 0,
∂ψ

∂z
= 0, θ = 0,

⎫⎪⎬
⎪⎭ (3.22)

where ∇4 = ∇2 ∇2. Let us consider the plane wave solutions of (3.20)–(3.22) defined
by

ψ(x, z, t) = Re
[
i f (z) eλ t ei (ax−ωt)

]
, θ(x, z, t) = Re

[
h(z) eλ t ei (ax−ωt)

]
, (3.23)

where Re[ ] denotes the real part of a complex function. In (3.23), we have split the
disturbance growth rate into its real and imaginary parts, so that both λ and ω are
real. The parameter λ is positive for unstable rolls, negative for stable rolls and zero at
marginal stability. In the following, we will focus on the marginal stability condition
so that we will set λ= 0. Then, on substituting (3.23) in (3.20)–(3.22), one obtains

f ′′′′ − 2 a2f ′′ + a4f − ah = 0, (3.24)

h′′ − [a2 + i(a Pe z cos γ − ω)]h + 2i cos γ
Λ

Pe
f ′′ +

Λ

Pe
a(Pe z + 2 i a cos γ )f = 0,

(3.25)

z = 0 : f = 0, f ′ = 0, h′ = 0,

z = 1 : f = 0, f ′ = 0, h = 0,

}
(3.26)

where

Λ = GePe2. (3.27)

and the primes denote derivatives with respect to z.
The use of the parameter Λ instead of the Gebhart number is a convenient choice,

as will become evident from the discussion of the results below. In fact, at the onset
of the instability, the most physically significant cases are such that the Gebhart
number is very small, while the parameter Λ has a value independent of Ge and
Pe. In particular, a finite value of Λ yields the critical condition for the onset of
longitudinal rolls. We mention that the same dimensionless parameter, GePe2, has
been introduced in Barletta, Celli & Rees (2009) and in Nield & Barletta (2010). These
papers investigate the onset of the thermoconvective instability in a fluid saturated
porous medium governed by Darcy’s law, with a basic horizontal throughflow and a
non-negligible viscous dissipation.
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4. Numerical solution
The pair of ordinary differential equations (3.24) and (3.25) are homogeneous with

homogeneous boundary conditions, (3.26). This feature leads to the formulation of an
eigenvalue problem, where (γ, P e, a) are the input parameters. Then, the pair (ω, Λ)
is determined as an eigenvalue corresponding to the eigenfunction pair (f, h). We
mention that the eigenvalue problem is not self-adjoint, as f (z) and h(z) are complex
valued functions.

A numerical solution of (3.24)–(3.26) can be sought by using the fourth-order
Runge–Kutta technique. An initial-value problem formulation can be based on (3.24)
and (3.25) and on the initial conditions

f (0) = 0, f ′(0) = 0, f ′′(0) = ξ1 + iξ2, f ′′′(0) = η1 + iη2,

h(0) = 1, h′(0) = 0.

}
(4.1)

In fact, (4.1) is based on (3.26), as well as on the possibility of fixing arbitrarily
the overall scale of the eigenfunction pair (f, h) through the condition h(0) = 1. The
yet unknown real parameters (ξ1, ξ2, η1, η2), together with the eigenvalue pair (ω, Λ),
can be obtained by imposing, through a shooting method, the six real constraint
equations:

Re[f (1)] = 0, Re[f ′(1)] = 0, Re[h(1)] = 0,

Im[f (1)] = 0, Im[f ′(1)] = 0, Im[h(1)] = 0,

}
(4.2)

implied by (3.26), where Im[ ] denotes the imaginary part of a complex function.
The numerical integration of (3.24)–(3.25) under the initial conditions (4.1)

can be carried out within the Mathematica 7.0 ( c© Wolfram, Inc.) environment.
More precisely, we can use function NDSolve, with the assignment Method →
“ExplicitRungeKutta”. In Mathematica 7.0, the built-in Runge–Kutta method
includes an adaptive step-size control so that the step size, δz, need not be assigned.
Finally, the shooting method can be implemented through the constraints (4.2) by
means of the function FindRoot. The optimal order of the Runge–Kutta method is
automatically established by the code.

The numerical solutions obtained by the above procedure can be collected so that,
for every given value of Pe, one has a parametric function Λ(a). The minimum of
this function corresponds to the critical conditions for the onset of the convective
instability, namely a = acr and Λ =Λcr .

4.1. Oblique, longitudinal and transverse rolls

The eigenvalue problem is solved numerically for an arbitrary inclination angle γ

between the basic flow direction and the x-axis, where 0 � γ � π/2. We will call
transverse rolls the disturbances such that γ = 0 and longitudinal rolls the disturbances
such that γ = π/2.

4.2. Longitudinal rolls

Let us consider longitudinal rolls (γ = π/2) with ω = 0, then (3.24)–(3.26) yield

f ′′′′ − 2 a2f ′′ + a4f − ah = 0, (4.3)

h′′ − a2h + Λazf = 0, (4.4)

z = 0 : f = 0, f ′ = 0, h′ = 0,

z = 1 : f = 0, f ′ = 0, h = 0.

}
(4.5)

Equations (4.3)–(4.5) form a self-adjoint eigenvalue problem, so that f (z) and h(z)
are real-valued functions.
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A roughly approximate analytical solution of (4.3)–(4.5) may be sought by
employing a first-order Galerkin method of weighted residuals (see, for instance,
Finlayson & Scriven 1966). We approximate f (z) and h(z) through a pair of trial
functions, ϕ1(z), ϕ2(z), satisfying the boundary conditions (4.5),

f (z) ∼= Aϕ1(z), h(z) ∼= ϕ2(z), (4.6)

where

ϕ1(z) = (1 − z)2 z2, ϕ2(z) = 1 − z2, (4.7)

and we have invoked the scale fixing condition h(0) = 1. For a given a, the coefficient
A in (4.6) will be determined together with Λ by substitution in (4.3) and (4.4). More
precisely, from (4.3) and (4.4), one obtains the pair of residuals

E1(z) = Aϕ′′′′
1 (z) − 2a2 Aϕ′′

1 (z) + a4Aϕ1(z) − aϕ2(z), (4.8)

E1(z) = ϕ′′
2 (z) − a2 ϕ2(z) + ΛazAϕ1(z). (4.9)

By prescribing the orthogonality between each residual and the corresponding trial
function, namely ∫ 1

0

E1(z) ϕ1(z) dz = 0,

∫ 1

0

E2(z) ϕ2(z) dz = 0, (4.10)

one obtains

A ∼=
15a

a4 + 24a2 + 504
, Λ ∼=

224(2a2 + 5)(a4 + 24a2 + 504)

135a2
. (4.11)

We now find the minimum of function Λ(a) defined by (4.11), thus determining a
rough estimate of the critical conditions for the onset of instability,

acr
∼= 2.4, Λcr

∼= 3.2 × 103. (4.12)

By using the Runge–Kutta numerical solution and the shooting method with (4.3)–
(4.5), we obtain extremely accurate critical values (acr , Λcr ), namely

acr = 2.62929, Λcr = 2772.27. (4.13)

Equation (4.12) may be considered as an approximation of the exact result, (4.13),
with a 9 % error for acr and a 15 % error for Λcr .

We mention that the numerical values displayed in (4.13) are not new in the
literature on convective instability. In particular, they have been found by Roberts
(1967) in the linear stability analysis of a fluid layer with a uniform internal heat
generation and bounded by a pair of plane parallel rigid walls at rest. Roberts’
analysis has been further developed by Tveitereid & Palm (1976), Hamabata &
Takashima (1983) and Takashima (1991). In these papers, the basic solution is one of
vanishing velocity, and not Couette flow as in the present study. Furthermore, 2.6293
is the critical value of the wavenumber, but 2772.27 arises as the critical value of
the ‘internal’ Rayleigh number, and not of the parameter Λ = GePe2. The internal
Rayleigh number is defined by Roberts (1967) as the Rayleigh number evaluated for
a temperature difference proportional to the uniform rate of heat generation per unit
volume, q0, within the layer,

RaI =
β g q0 L5

ν α k
. (4.14)

We point out that, for the basic state of Couette flow, the effect of viscous dissipation
is in fact equivalent to a uniform generation of heat within the fluid, q0 = µ u2

0/L
2.
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Method Λcr acr ωcr

Euler, δz = 10−3 44302.7698 2.96290196 1016.08305
Euler, δz = 10−4 44268.9286 2.96282043 1016.76978
Euler, δz = 5 × 10−5 44267.0718 2.96281718 1016.80824
Euler, δz = 10−5 44265.5881 2.96281469 1016.83903
Euler, δz = 5 × 10−6 44265.4027 2.96281438 1016.84288
Runge–Kutta (fourth order) 44265.2174 2.96281408 1016.84673
Runge–Kutta (ninth order) 44265.2174 2.96281408 1016.84673

Table 1. Large-Pr approximation; critical values of a, Λ and ω for transverse rolls (γ = 0) with
Pe =600; comparison between the Euler method with a fixed step size, δz, the fourth-order
Runge–Kutta method with adaptive step-size control and the ninth-order Runge–Kutta method
with adaptive step-size control.

The latter relationship can be easily obtained from (2.4), (2.6) and (2.11). Moreover,
for longitudinal rolls, the effect of viscous dissipation associated with the velocity
disturbances turns out to be negligible. On substituting q0 =µ u2

0/L
2 in (4.14), we

obtain

RaI =
βgL

c

u2
0L

2

α2
= GePe2 = Λ. (4.15)

This justifies the coincidence of the numerical results obtained by Roberts (1967) and
those reported in (4.13).

5. Discussion of the results
5.1. Validation of the numerical method

A validation of the numerical procedure based on the Runge–Kutta method with
adaptive step-size control is carried out by comparison with the Euler method. The
latter method is implemented in the Mathematica 7.0 environment through the built-
in function NDSolve, with the assignment Method → “ExplicitEuler” and a fixed
step-size setting. Decreasing values of the step size, δz, are prescribed as δz =10−3 to
5 × 10−6. The computed values of Λcr , acr and ωcr are reported in table 1, referring
to the case of transverse rolls (γ = 0) with Pe = 600. This table clearly shows that
the Euler method leads to results closer and closer to those obtained through the
fourth-order Runge–Kutta method as δz decreases. We note that, the agreement for
δz = 5 × 10−6 is almost perfect within five significant digits. A further validation of
the fourth-order Runge–Kutta method with adaptive step-size control is provided in
table 1, by comparison with the ninth-order Runge–Kutta method with adaptive step-
size control. In this case, the agreement within nine significant digits is perfect, thus
showing that the solution is practically not sensitive to the order of the Runge–Kutta
method. We mention that the default adaptive step-size control implemented in the
function NDSolve is a very efficient algorithm that allows a much faster convergence
than the fixed step-size mode of the Euler method. As a result of the validation
procedure, all the following computations will be performed by the Runge–Kutta
method with the default adaptive step-size control and automatic assignment of the
optimal order.

5.2. The effect of the inclination angle

The numerical solution of (3.24)–(3.26) for different values of γ allows one to establish
the effects of the inclination angle with respect to the critical conditions for the onset of
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Figure 2. Large-Pr approximation; critical value Λcr versus the inclination angle γ for
oblique rolls with different Pe.
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Figure 3. Large-Pr approximation; critical value acr versus the inclination angle γ for
oblique rolls with different Pe.

instability. Figure 2 illustrates the dependence of Λcr on γ for Pe = 100, 200, 400, 600.
The basic information that can be drawn from this figure is as follows:

(i) for a given Pe, longitudinal rolls (γ = π/2) are the most unstable disturbances,
i.e. they correspond to the lowest value of Λcr ;

(ii) Λcr is a monotonic decreasing function of γ ;
(iii) the dependence of Λcr on γ becomes more and more marked as Pe increases.
As will be pointed out in the following section, there exists a narrow range of Pe,

close to the limiting case Pe → 0, where the statement (i) does not hold.
Figure 3 reveals that the critical wavenumber acr is not a monotonic function of

the inclination angle γ . For a given Pe, there exists a value of γ , different from both
0 and π/2, where acr reaches a maximum. The minimum value of acr , namely 2.62929
as given by (4.13), is attained in the case of longitudinal rolls (γ = π/2).

Figure 4 shows the monotonic decreasing behaviour of ωcr versus γ . There is a very
large gap between the high positive value of ωcr associated with the transverse rolls
and the vanishing value of ωcr for longitudinal rolls. This gap is markedly amplified
as Pe increases. Figure 4 supports the assumption ωcr = 0 leading to a self-adjoint
eigenvalue problem in the limit γ → π/2 (longitudinal rolls).

Figure 5 displays the marginal stability curves, Λ(a), for Pe = 200, 400, and either
longitudinal rolls or oblique rolls having an inclination angle γ slightly smaller
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Figure 4. Large-Pr approximation; critical value ωcr versus the inclination angle γ for
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Figure 5. Large-Pr approximation; marginal stability curves with: γ = π/2 (line (a));
γ = 7π/16 and Pe = 200 (line (b) solid); γ = 15π/32 and Pe = 400 (line (b) dashed); γ = 3π/8
and Pe = 200 (line (c) solid); γ = 7π/16 and Pe = 400 (line (c) dashed).

than π/2. The most interesting feature of this figure is that the marginal stability
curves have the typical shape found for the Rayleigh–Bénard problem (Drazin &
Reid 2004). We also note that the marginal stability curves for Pe =200 are almost
coincident with those for Pe = 400 even though they correspond to different values
of γ : (3π/8, 7π/16, π/2) for Pe = 200; (7π/16, 15π/32, π/2) for Pe = 400. This feature
suggests an approximate scale symmetry of the marginal stability condition, that
holds in a neighbourhood of γ = π/2. In other words, the function Λ(a) is seemingly
left invariant when we rescale Pe → H Pe and (π/2 − γ ) → (π/2 − γ )/H , where H is
a real positive constant. This approximate symmetry is conceivable also on the basis
of figures 2 and 3.

5.3. The effect of the Péclet number

The change of the critical value (Λcr, acr , ωcr ) as Pe increases is represented in
figures 6–8, for oblique rolls with γ = π/4 and for transverse rolls γ = 0. For both
kinds of disturbances, Λcr and ωcr are increasing functions of Pe. On the other hand,
as it is shown in figure 7, acr displays a non-monotonic behaviour as Pe increases.

Figures 6 and 8 suggest that, for large values of Pe, Λcr and ωcr are approximately
a linear function of Pe.
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One may easily infer that, in the limit Pe → 0, (3.24)–(3.26) can be rewritten as

f ′′′′ − 2 a2f ′′ + a4f − ah = 0, (5.1)

h′′ − (a2 − iω)h + 2iΩf ′′ + 2i a2Ωf = 0, (5.2)
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z = 0 : f = 0, f ′ = 0, h′ = 0,

z = 1 : f = 0, f ′ = 0, h = 0,

}
(5.3)

where

Ω =
Λ

Pe
cos γ. (5.4)

The critical values of (a, Ω, ω) at the onset of instability may be evaluated by solving
the eigenvalue problem (5.1)–(5.3) by means of the numerical procedure described in
§ 4. Thus, one obtains

acr = 3.10474, Ωcr = 1199.54, ωcr = −20.3596. (5.5)

This means that, for oblique rolls with 0 � γ < π/2, the limits for Pe → 0 of acr , Λcr

and ωcr are

acr → 3.10474, Λcr → 0, ωcr → −20.3596. (5.6)

These limits are confirmed by figures 6–8. Therefore, for every γ with 0 � γ < π/2,
there exists a range of small values of Pe such that Λcr for the oblique rolls is smaller
than the critical value of Λ for longitudinal rolls, i.e. 2772.27 as given by (4.13). Then,
in this range of small Péclet numbers, the longitudinal rolls are less unstable than
oblique rolls, in contrast with the usual behaviour described in the preceding section.
We mention that the data for very low values of Pe are hardly significant in practice.
In fact, Turcotte et al. (1974) considered values of the Gebhart number up to 3,
but usually Ge is much lower than 1. Then, as a consequence of (3.27), the critical
condition Λcr = 2772.27 with Pe = 10 implies a critical Gebhart number 27.7227 for
the Couette flow to become unstable. We reckon that this critical condition is unlikely
to be observed in a real flow system. Far more realistic cases are, for instance, those
with Pe > 1000, since the associated critical Gebhart number would be smaller than
2.77227 × 10−3. As a consequence, the range of small Péclet numbers, where the
longitudinal rolls are less unstable than oblique rolls, appears to be barely significant
from a physicist’s perspective.

6. A finite Prandtl number
We now consider the case of finite-Pr disturbances, (3.2)–(3.7), having in mind the

case of transverse rolls, γ = 0. In fact, for a finite Prandtl number, the only case
such that two-dimensional oblique rolls defined by (3.14) are compatible with (3.2)–
(3.7) is γ = 0. As can be easily checked, the reason is the term (PeW sin γ )/P r that
appears on the left-hand side of (3.4). If one seeks solutions defined by (3.14), (3.4)
is satisfied only if (PeW sin γ )/P r = 0. For finite non-vanishing values of Pr and Pe,
this equation implies that either W =0 or γ = 0 (transverse rolls). The first option,
W = 0, would lead to trivial solutions, so that one may only consider the second
option, i.e. transverse rolls.

We recognize that, among the possible oblique rolls, transverse rolls are the less
interesting case, as the flow is usually much more unstable to longitudinal rolls. The
latter disturbance modes are not allowed in the finite-Pr case. Thus, this section
has just the objective of assessing the validity of the large-Pr approximation. By
considering two-dimensional transverse rolls defined by (3.14), we compare the results
discussed in the preceding sections for the large-Pr regime with those obtained for a
finite Prandtl number.
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Figure 9. Critical value Λcr versus Pr for transverse (γ = 0) rolls with Pe =100, 200, 500.

6.1. Two-dimensional transverse rolls

Let us assume that γ = 0 and that (3.14) holds. Then, (3.4) is identically satisfied,
while (3.2) is fulfilled by defining a streamfunction ψ(x, z, t) such that (3.19) holds.

As a consequence, one can combine (3.3) and (3.5) in order to encompass the
dependence on the pressure disturbance P , so that (3.3), (3.5)–(3.7) and (3.19) yield(

∂

∂t
− Pr∇2 + Pez

∂

∂x

)
∇2ψ = − Pr

∂θ

∂x
, (6.1)

∂θ

∂t
+ Pez

(
∂θ

∂x
+ GePe

∂ψ

∂x

)
= ∇2θ + 2GePe

(
∂2ψ

∂z2
− ∂2ψ

∂x2

)
, (6.2)

z = 0 : ψ = 0,
∂ψ

∂z
= 0,

∂θ

∂z
= 0,

z = 1 : ψ = 0,
∂ψ

∂z
= 0, θ = 0.

⎫⎪⎬
⎪⎭ (6.3)

Plane wave solutions of (6.1)–(6.3) are sought, given by (3.23). In the following,
we deal with the marginal stability condition, so that we consider λ=0. Then, on
substituting (3.23) in (6.1)–(6.3), we obtain

f ′′′′ −
[
2 a2 + i

aPez − ω

Pr

]
f ′′ + a2

[
a2 + i

aPez − ω

Pr

]
f − ah = 0, (6.4)

h′′ − [a2 + i(aPez − ω)]h + 2 i
Λ

Pe
f ′′ +

Λ

Pe
a (Pez + 2ia) f = 0, (6.5)

z = 0 : f = 0, f ′ = 0, h′ = 0,

z = 1 : f = 0, f ′ = 0, h = 0.

}
(6.6)

The same numerical solution procedure described in § 4 can be applied. We note
that here we must give the input values (Pr, Pe, a) and obtain the pair (ω, Λ) as
the eigenvalue in the numerical solution of (6.4)–(6.6). Again, the critical values
(Λcr, acr , ωcr ), for a given pair (Pr, Pe), are obtained by seeking the minimum of
function Λ(a), the latter being the eigenvalue Λ that corresponds to the assigned data
(Pr, Pe, a).

Figure 9 illustrates the behaviour of Λcr versus Pr for increasing values of Pe,
namely 100, 200 and 500. The critical value Λcr is a decreasing function of Pr in the
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ranges considered in figure 9. The results of the large-Pr approximation, analysed in
the previous sections, are recovered asymptotically.

Figures 10 and 11 are the companions of figure 9 displaying the behaviour of acr

and ωcr , respectively, for finite values of Pr . Figures 10 and 11 reveal that both acr

and ωcr are increasing functions of Pr for a given value of Pe.
A quantitative comparison between the data reported in figures 9–11 and those

obtained in the large-Pr approximation can be established as follows. For a given
value of Pe = 100, 200 or 500, let us consider the three quantities Λcr , acr and ωcr

and determine the threshold value Prtr such that, for Pr > Prtr , each quantity differs
from its asymptotic value by less than 5 %. Following this procedure, we see that Prtr

is approximately equal to 9 when Pe = 100, 22 when Pe = 200 and 61 when Pe = 500.

7. Conclusions
A linear stability analysis of the basic Couette flow in a plane channel has been

carried out. The viscosity of the fluid has been assumed to be constant, while the
density changes have been taken into account through the buoyancy force, thus
invoking the Oberbeck–Boussinesq approximation. Boundary conditions have been
considered such that the viscous dissipation contribution in the local energy balance is
the unique driving mechanism of the convective instability. In particular, an insulated
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bottom boundary and a constant temperature top boundary have been considered.
A highly viscous fluid with a very large Prandtl number, Pr , has been studied. In the
limit Pr → ∞, a complete set of normal modes in the form of two-dimensional oblique
rolls has been introduced for modelling the linear disturbances to the basic flow. A
numerical solution, based on the Runge–Kutta method, has lead to the determination
of the critical conditions for the onset of the convective instability. The main results
obtained are the following.

(i) The longitudinal rolls, having the axes parallel to the basic flow direction, are
the most unstable modes. The transverse rolls, having the axes perpendicular to the
basic flow direction, are the most stable modes. The only exception to this rule is
displayed for very small values Pe: a regime where the onset of the instability may
occur only for unphysically large values of Ge.

(ii) The governing parameter for the onset of the instability is Λ =Ge Pe2, where
Ge is the Gebhart number and Pe is the Péclet number.

(iii) For longitudinal rolls, the minimum value of Λ at marginal stability, i.e. the
critical value Λcr , is independent of Pe. Its value is Λcr = 2772.27.

(iv) A numerical study of the transverse rolls, in the case of a finite Prandtl number,
has allowed us to assess the validity of the Pr → ∞ assumption. Numerical tests for
Pe = 100, 200, 500 revealed that a fair agreement with the large-Pr approximation
exists when Pr is greater than 9, 22 and 61, depending on the value of Pe. We mention
that, for instance, engine oils usually have values of Pr greater than 100.
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